Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic path order with status [19].
Quasi-Precedence:
v1 > d1
v1 > u1
v1 > b1
w1 > d1
w1 > u1
w1 > b1

Status:
trivial